Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
1.
J Hum Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565611

RESUMO

Spondylocostal dysostosis (SCDO) encompasses a group of skeletal disorders characterized by multiple segmentation defects in the vertebrae and ribs. SCDO has a complex genetic etiology. This study aimed to analyze and identify pathogenic variants in a fetus with SCDO. Copy number variant sequencing and whole exome sequencing were performed on a Chinese fetus with SCDO, followed by bioinformatics analyses, in vitro functional assays and a systematic review on the reported SCDO cases with LFNG pathogenic variants. Ultrasound examinations in utero exhibited that the fetus had vertebral malformation, scoliosis and tethered cord, but rib malformation was not evident. We found a novel homozygous variant (c.1078 C > T, p.R360C) within the last exon of LFNG. The variant was predicted to cause loss of function of LFNG by in silico prediction tools, which was confirmed by an in vitro assay of LFNG enzyme activity. The systematic review listed a total of 20 variants of LFNG in SCDO. The mutational spectrum spans across all exons of LFNG except the last one. This study reported the first Chinese case of LFNG-related SCDO, revealing the prenatal phenotypes and expanding the mutational spectrum of the disorder.

3.
Nanoscale ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596837

RESUMO

Improving the mechanical properties of wound dressings and achieving personalized automatic real-time in situ deposition are important for accelerating wound management and repair. In this study, we report a self-designed automatic in situ deposition device based on solution blow spinning (SBS) to prepare poly(lactic-co-glycolic acid) (PLGA) and poly-L-lactic acid (PLLA) composite (PLGA/PLLA) nanofibrous membranes for wound dressing at a short distance. Polymer solution and in situ deposition conditions, including air pressure, spinning distance, solvent extrusion rate, and spinning rate, were optimized using orthogonal experiments and characterized via dynamic mechanical analysis. The microscopic morphology and physical properties of the prepared PLGA/PLLA composite nanofibrous membranes show that their strength, adhesion, water vapor transmission rate (WVTR), water retention, water absorption, degradation, and other properties were sufficient for wound-dressing applications. To investigate the possibility of a biomedical wound-dressing material, tannic acid (TA) was incorporated into the PLGA/PLLA composite nanofibrous membranes. The resultant PLGA/PLLA/TA composite nanofibrous membranes exhibited good biocompatibility and exceptional antibacterial properties against both Escherichia coli and Staphylococcus aureus. A pilot animal study illustrated the potential of this in situ deposition of PLGA/PLLA/TA composite nanofibrous membranes across multiple applications in wound healing/repair by reducing wound scar tissue formation and fibroblast overactivation.

4.
J Am Chem Soc ; 146(15): 10798-10805, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579304

RESUMO

Though the coordination environment of single metal sites has been recognized to be of great importance in promoting catalysis, the influence of simultaneous precise modulation of primary and secondary coordination spheres on catalysis remains largely unknown. Herein, a series of single Ni(II) sites with altered primary and secondary coordination spheres have been installed onto metal-organic frameworks (MOFs) with UiO-67 skeleton, affording UiO-Ni-X-Y (X = S, O; Y = H, Cl, CF3) with X and Y on the primary and secondary coordination spheres, respectively. Upon deposition with CdS nanoparticles, the resulting composites present high photocatalytic H2 production rates, in which the optimized CdS/UiO-Ni-S-CF3 exhibits an excellent activity of 13.44 mmol g-1, ∼500 folds of the pristine catalyst (29.6 µmol g-1 for CdS/UiO), in 8 h, highlighting the key role of microenvironment modulation around Ni sites. Charge kinetic analysis and theoretical calculation results demonstrate that the charge transfer dynamics and reaction energy barrier are closely correlated with their coordination spheres. This work manifests the advantages of MOFs in the fabrication of structurally precise catalysts and the elucidation of particular influences of microenvironment modulation around single metal sites on the catalytic performance.

5.
Front Neurol ; 15: 1383832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576533

RESUMO

Background: Growing evidence suggests that headache disorders and atopic dermatitis share similar pathological mechanisms and risk factors. The aim of this study was to assess the risk for headache disorders in patients with atopic dermatitis. Methods: We systematically searched the PubMed and Embase databases from inception to December 1, 2023, for observational studies that examined risk of migraine in subjects with atopic dermatitis. Risk estimates from individual studies were pooled using random-effects models. Results: Ten studies with 12,717,747 subjects were included in the meta-analysis. Our results showed that patients with atopic dermatitis were associated with a higher risk of headache disorder (OR, 1.46, 95% CI = 1.36-1.56; P < 0.001; I2 = 98%) or migraine (OR, 1.32, 95% CI = 1.18-1.47; P < 0.001; I2 = 98.9%). Most of the results of the subgroup analyses were consistent with the overall results. Conclusion: The findings of this meta-analysis suggest that atopic dermatitis is a potential risk indicator for headache disorder or migraine. Further studies are still needed to verify our findings due to the substantial heterogeneity in our analyses.

6.
World J Gastroenterol ; 30(9): 1108-1120, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577179

RESUMO

BACKGROUND: Although chronic erosive gastritis (CEG) is common, its clinical characteristics have not been fully elucidated. The lack of consensus regarding its treatment has resulted in varied treatment regimens. AIM: To explore the clinical characteristics, treatment patterns, and short-term outcomes in CEG patients in China. METHODS: We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology. Patients and treating physicians completed a questionnaire regarding history, endoscopic findings, and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment. RESULTS: Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included. Epigastric pain (68.0%), abdominal distension (62.6%), and postprandial fullness (47.5%) were the most common presenting symptoms. Gastritis was classified as chronic non-atrophic in 69.9% of patients. Among those with erosive lesions, 72.1% of patients had lesions in the antrum, 51.0% had multiple lesions, and 67.3% had superficial flat lesions. In patients with epigastric pain, the combination of a mucosal protective agent (MPA) and proton pump inhibitor was more effective. For those with postprandial fullness, acid regurgitation, early satiety, or nausea, a MPA appeared more promising. CONCLUSION: CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms. Gastroscopy may play a major role in its detection and diagnosis. Treatment should be individualized based on symptom profile.


Assuntos
Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Úlcera Gástrica , Humanos , Gastrite/diagnóstico , Gastrite/tratamento farmacológico , Gastrite/epidemiologia , Gastrite Atrófica/diagnóstico , Gastrite Atrófica/epidemiologia , Gastrite Atrófica/patologia , Úlcera Gástrica/patologia , Gastroscopia , Dor , Estilo de Vida , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia
7.
Angew Chem Int Ed Engl ; : e202405027, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656532

RESUMO

A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford B3O3-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs). The CPOFs display excellent solution processability, allowing dissolution and subsequent crystallization to their original structures, independent of recrystallization conditions, possibly due to the diverse bond energies of the involved interactions. Significantly, the CPOFs can be synthesized on a gram-scale using cost-effective monomers. In addition, the numerous acidic sites endow the CPOFs with high NH3 capacity, surpassing most porous organic materials and commercial materials.

8.
Food Chem ; 449: 139259, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38626667

RESUMO

Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.

9.
Shock ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38517274

RESUMO

BACKGROUND: This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. METHODS: A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin (H&E) staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerasechain reaction (RT-qPCR). The expression of glycocalyx-, cell junction- and PI3K/Akt/NF-κB signaling pathway- related proteins was analyzed by western blot. RESULTS: MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, ß-catenin, MMP2 and MMP9 was upregulated, the expression of E-cad was downregulated and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The side effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx, increased the expression of SDC-1, HPA, ß-catenin, MMP2 and MMP9 while decreased E-cad expression, and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. CONCLUSION: MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38547516

RESUMO

ABSTRACT: This study seeks to identify the anticoagulant efficacy of rivaroxaban treatment on thrombi detected using echocardiography of the left atrial appendage in 275 patients with persistent atrial fibrillation (AF). During follow-up after 9 to 24 weeks of Rivaroxaban treatment, patients were divided into 'effective group' (n = 143) and 'ineffective group' (n = 132) according to the thrombolytic effect of the drug. Left atrial diameter (LAD), left atrial ejection fraction (LAEF), left ventricular ejection fraction (LVEF), mean diameter of left atrial appendage (LAADmean), angle between left atrial appendage and left atrial (LAA-A), velocity of blood flow in left atrial appendage (LAA-v) and thrombus size were compared before and after drug administration. Following treatment, LAEF, LVEF and LAA-v values were greater and LAD and LAADmean values were lower in the effective (P<0.05). Logistic regression analysis showed significant correlations of LAD, LAEF, LVEF, LAA-A and LAA-v with anticoagulant efficacy (P<0.05). The efficacy of Rivaroxaban in treatment of left atrial auricular thrombosis in patients with persistent AF was correlated with LAD, LAEF, LVEF, LAA-A and LAA-v. Multivariate logistic regression analysis further revealed LAEF (OR 1.7, 95% CI 0.45-16.9, P=0.008), 3D-EF (OR 6.4, 95% CI 1.06-16.9, P=0.039), and left ventricular global longitudinal strain (GLS) (OR 18.0, 95% CI 1.38-35.68, P=0.028) as factors related to left atrial appendage thrombus. Echocardiography with global longitudinal strain assessment could be effectively utilized to evaluate the functional parameters of LAA and thus aid in predicting the safety of Rivaroxaban as an anticoagulation agent.

11.
J Am Chem Soc ; 146(13): 9026-9035, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441064

RESUMO

The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.

12.
Acc Chem Res ; 57(8): 1214-1226, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38552221

RESUMO

ConspectusChemical reactions can be promoted at lower temperatures and pressures, thereby reducing the energy input, by introducing suitable catalysts. Despite its significance, the quest for efficient and stable catalysts remains a significant challenge. In this context, addressing the efficiency of catalysts stands out as a paramount concern. However, the challenges posed by the vague structure and limited tailorability of traditional catalysts would make it highly desirable to fabricate optimized catalysts based on the understanding of structure-activity relationships. Covalent organic frameworks (COFs), a subclass of fully designed crystalline materials formed by the polymerization of organic building blocks through covalent bonds have garnered widespread attention in catalysis. The precise and customizable structures of COFs, coupled with attributes such as high surface area and facile functional modification, make COFs attractive molecular platforms for catalytic applications. These inherent advantages position COFs as ideal catalysts, facilitating the elucidation of structure-performance relationships and thereby further improving the catalysis. Nevertheless, there is a lack of systematic emphasis on and summary of structural regulation at the atomic/molecular level for COF catalysis. Consequently, there is a growing need to summarize this research field and provide deep insights into COF-based catalysis to promote its further development.In this Account, we will summarize recent advances in structural regulation achieved in COF-based catalysts, placing an emphasis on the molecular design of the structures for enhanced catalysis. Considering the unique components and structural advantages of COFs, we present the fundamental principles for the rational design of structural regulation in COF-based catalysis. This Account starts by presenting an overview of catalysis and explaining why COFs are promising catalysts. Then, we introduce the molecular design principle for COF catalysis. Next, we present the following three aspects of the specific strategies for structural regulation of COF-based catalysts: (1) By designing different functional groups and integrating metal species into the organic unit, the activity and/or selectivity can be finely modulated. (2) Regulating the linkage facilitates charge transfer and/or modulates the electronic structure of catalytic metal sites, and accordingly, the intrinsic activity/selectivity can be further improved. (3) By means of pore wall/space engineering, the microenvironment surrounding catalytic metal sites can be modulated to optimize performance. Finally, the current challenges and future developments in the structural regulation of COF-based catalysts are discussed in detail. This Account provides insight into the structural regulation of COF-based catalysts at the atomic/molecular level toward improving their performance, which would provide significant inspiration for the design and structural regulation of other heterogeneous catalysts.

13.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521276

RESUMO

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Assuntos
Metagenoma , Petróleo , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Oceanos e Mares , Petróleo/metabolismo
14.
J Surg Res ; 297: 63-70, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447337

RESUMO

INTRODUCTION: Diabetic foot ulcer (DFU) is a severe complication that threatens the daily lives of patients with diabetes and represents a serious challenge to the global health system. Considering that impaired wound healing is the leading cause of DFU, exploring the mechanism of diabetic wound healing is beneficial for improving DFU treatment. Resveratrol (RES) is a native polyphenol with various pharmacological characteristics, and recent studies have indicated an accelerated function of RES in diabetic wound healing. As human dermal fibroblasts (HDFs) play a significant role in diabetic wound healing, this study aimed to elucidate the regulatory mechanism of RES in HDFs. METHODS: To mimic diabetic wound healing in vitro, the HDFs were stimulated with high glucose (HG). Our findings revealed that RES reversed HG-induced suppression of HDF proliferation and migration caused by HG. RES inhibits the Notch signaling pathway. More importantly, we demonstrated that the activation of the Notch pathway abrogated the effects of RES on HG-induced HDFs. RESULTS: In vivo assays also illustrated that RES contributed to wound healing in diabetic mice by blocking the Notch pathway. CONCLUSIONS: In conclusion, RES improved diabetic wound healing by targeting the Notch pathway, which offers novel insights into DFU therapy.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Humanos , Camundongos , Animais , Resveratrol/farmacologia , Diabetes Mellitus Experimental/metabolismo , Cicatrização , Pele/metabolismo
15.
Gene ; 913: 148375, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38490509

RESUMO

Deregulation of calcium/calmodulin-dependent protein kinase II (CAMK2) inhibitor 1 (CAMK2N1) has been reported to be associated with the development of several malignancies. To date, there have been few studies on the role of CAMK2N1 in lung cancer. This study aimed to investigate the relationship between CAMK2N1 and the progression of non-small cell lung cancer (NSCLC). Methodological quality was assessed using the ARRIVE guidelines. CAMK2N1 was expressed at low levels in NSCLC tissues. Overexpression of CAMK2N1 in NSCLC cell lines resulted in changes such as proliferation inhibition, metastasis inhibition, autophagy increase, and apoptosis. Mechanistic studies revealed the regulatory role of CAMK2N1/CAMK2 in AKT/mTOR signaling. Upregulation of CAMK2N1 decreased the expression levels of phosphorylated calmodulin kinase 2 (p-CaMK2), phosphorylated Akt (p-Akt), and phosphorylated-mTOR (p-mTOR). In contrast, CAMK2 overexpression increased p-AKT and p-mTOR levels. Inhibition of autophagy or activation of AKT signaling reduced CAMK2N1-mediated tumor suppression. The tumorigenic ability of CAMK2N1 overexpressing cells significantly diminished in nude mice. In conclusion, this study demonstrated the cancer suppressive function of CAMK2N1 in NSCLC and showed that CAMK2N1/CAMK2 exerted anti-cancer effects by inhibiting the AKT/mTOR signaling pathway to promote autophagy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , 60489 , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Autofagia/genética , Proliferação de Células , Linhagem Celular Tumoral
16.
Adv Healthc Mater ; : e2304194, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508211

RESUMO

Efforts are made to enhance the inherent potential of extracellular vesicles (EVs) by utilizing 3D culture platforms and engineered strategies for functional cargo-loading. Three distinct types of adipose mesenchymal stem cells-derived EVs (ADSCs-EVs) are successfully isolated utilizing 3D culture platforms consisting of porous gelatin methacryloyl (PG), PG combined with sericin methacryloyl (PG/SerMA), or PG combined with chondroitin sulfate methacryloyl (PG/ChSMA). These correspond to PG-EVs, PG/SerMA-EVs, and PG/ChSMA-EVs, respectively. Unique microRNA (miRNA) profiles are observed in each type of ADSCs-EVs. Notably, PG-EVs encapsulate higher levels of hsa-miR-455-3p and deliver more hsa-miR-455-3p to chondrocytes, which results in the activation of the hsa-miR-455-3p/PAK2/Smad2/3 axis and the subsequent hyaline cartilage regeneration. Furthermore, the functionality of PG-EVs is optimized through engineered strategies, including agomir/lentivirus transfection, electroporation, and Exo-Fect transfection. These strategies, referred to as Agomir-EVs, Lentivirus-EVs, Electroporation-EVs, and Exo-Fect-EVs, respectively, are ranked based on their efficacy in encapsulating hsa-miR-455-3p, delivering hsa-miR-455-3p to chondrocytes, and promoting cartilage formation via the hsa-miR-455-3p/PAK2/Smad2/3 axis. Notably, Exo-Fect-EVs exhibit the highest efficiency. Collectively, the 3D culture conditions and engineered strategies have an impact on the miRNA profiles and cartilage regeneration capabilities of ADSCs-EVs. The findings provide valuable insights into the mechanisms underlying the promotion of cartilage regeneration by ADSCs-EVs.

17.
J Hazard Mater ; 469: 133872, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447364

RESUMO

Microplastics (MPs) are of great concern to coral health, particularly enhanced biotoxicity of small microplastics (< 100 µm) (SMPs). However, their fate and harm to remote coral reef ecosystems remain poorly elucidated. This work systematically investigated the distributions and features of MPs and SMPs in sediments from 13 islands/reefs of the Xisha Islands, the South China Sea for comprehensively deciphering their accumulation, sources and risk to coral reef ecosystems. The results show that both MPs (average, 682 items/kg) and SMPs (average, 375 items/kg) exhibit heterogeneous distributions, with accumulation within atolls and dispersion across fringing islands, which controlled by human activities and hydrodynamic conditions. Cluster analysis for the first time reveals a pronounced difference in their compositions between the southern and northern Xisha Islands and resultant distinct sources, i.e., MPs in the north part were leaked mainly from local domestic sewage and fishing waste, while in the south part were probably derived from industrial effluents from adjacent countries. Our ecological risk assessment suggests that the ecosystem within the Yongle Atoll is exposed to a high-risk of MPs pollution. The novel results and proposed framework facilitate to effectively manage and control MPs and accordingly preserve a fragile biosphere in remote coral reefs.


Assuntos
Recifes de Corais , Poluentes Químicos da Água , Humanos , Ecossistema , Microplásticos , Plásticos , Monitoramento Ambiental , China , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
18.
Zool Res ; 45(2): 341-354, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485504

RESUMO

Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments. After a period of dormancy, organisms often exhibit exceptional resilience. This period is typically divided into hibernation and aestivation based on seasonal patterns. However, the mechanisms by which organisms adapt to their environments during dormancy, as well as the potential relationships between different states of dormancy, deserve further exploration. Here, we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation, respectively. Based on histological and transcriptomic analysis of multiple organs, we discovered that dormancy involved a coordinated functional response across organs. Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures. Notably, similarities in gene expression patterns pertaining to energy metabolism, neural activity, and biosynthesis were noted during hibernation, suggesting a potential correlation between hibernation and aestivation. To further explore the relationship between these two phenomena, we analyzed other dormancy-capable species using data from publicly available databases. This comparative analysis revealed that most orthologous genes involved in metabolism, cell proliferation, and neural function exhibited consistent expression patterns during dormancy, indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution. In conclusion, this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.


Assuntos
Estivação , Hibernação , Humanos , Animais , Estivação/genética , Peixes/genética , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Hibernação/genética
19.
Cancer Sci ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438251

RESUMO

Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis. Mechanistically, PRMT5, a well-known arginine methyltransferase, was identified as a SMYD4-binding protein. SMYD4 monomethylated PRMT5 and enhanced the interaction between PRMT5 and MEP50, thereby promoting the symmetrical dimethylation of H3R2 and H4R3 on the PRMT5 target gene promoter and subsequently activating DVL3 expression and inhibiting expression of E-cadherin, RBL2, and miR-29b-1-5p. Moreover, miR-29b-1-5p was found to inversely regulate SMYD4 expression in HCC cells, thus forming a positive feedback loop. Furthermore, we found that the oncogenic effect of SMYD4 could be effectively suppressed by PRMT5 inhibitor in vitro and in vivo. Clinically, high coexpression of SMYD4 and PRMT5 was associated with poor prognosis of HCC patients. In summary, our study provides a model of crosstalk between lysine and arginine methyltransferases in HCC and highlights the SMYD4-PRMT5 axis as a potential therapeutic target for the treatment of HCC.

20.
Sheng Li Xue Bao ; 76(1): 45-51, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444130

RESUMO

The present study aims to investigate the effect of cathepsin K (CatK) on ischemic angiogenesis in high-fat diet fed mice. The mice were subjected to unilateral hindlimb ischemic surgery, and the ischemic blood flow was measured with a laser Doppler blood flow imager. Immunohistochemical staining was used to observe the quantity of new capillaries in the ischemic lower extremity, and Western blot was used to detect the expression of insulin receptor substrate-1 (IRS-1), p-Akt, Akt and vascular endothelial growth factor (VEGF). Firstly, the effect of high-fat diet on ischemic angiogenesis was observed in wild-type mice, which were randomly divided into control group and high-fat diet group and were fed with normal diet or 60% high-fat diet respectively for 16 weeks. The results showed the body weight and the plasma CatK concentration of the high-fat diet group was significantly increased compared with the control group (P < 0.05), and the blood flow recovery of the high-fat diet group was significantly lower than control group (P < 0.05). Then, wild-type and CatK knock out (CatK-/-) mice were both fed with high-fat diet to further observe the effect and mechanism of CatK on ischemic angiogenesis under high-fat diet. The results showed that the blood flow recovery in the CatK-/- group was significantly greater than the wild-type group, and the number of CD31 positive cells was significantly increased (P < 0.05). At the same time, the protein expression levels of IRS-1, p-Akt and VEGF in the ischemic skeletal muscle were significantly increased in the CatK-/- group compared with the wild-type group (P < 0.05). These results suggest that the deficiency of CatK improves ischemic angiogenesis in high-fat diet fed mice through IRS-1-Akt-VEGF signaling pathway.


Assuntos
Dieta Hiperlipídica , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , 60489 , Catepsina K , Dieta Hiperlipídica/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/genética , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...